Kinematics of Circumbinary Disks around the Prototypical Protostellar Binary Systems L1551 IRS 5 and NE

Shigehisa Takakuwa (ASIAA)
1. Introduction: Binary Star Formation

2. Submillimeter Array (SMA) Observations of L1551 NE

3. SMA & ASTE Observations of L1551 IRS 5

4. Discussion: Different Rotation in the Circumbinary Disks?

5. Summary
1. Introduction: Binary Star Formation

Previous observational and theoretical studies have established a standard scenario of single star formation (Myers et al. 2000, Andre et al. 2000).

However, stars often form as members of binary or multiple systems (Dunquennoy & Mayor ‘91, Mathieu ‘94).

``Circumbinary Disks” fragment into binaries (see Lim & Takakuwa 2006), thus possess information of the binary orbit, masses, the mass ratio…..

Observational understanding of structure and kinematics of circumbinary disks around the forming binary protostars is essential.
L1551 IRS 5

L1551 NE

Close (~50 AU for IRS 5; ~70 AU for NE) protostellar binary

L1551 IRS 5
\[L_{\text{bol}} = 22 \, L_{\odot}, \quad T_{\text{bol}} = 92 \, K, \quad 0.9 \, M_{\odot} \]

L1551 NE
\[L_{\text{bol}} = 4.2 \, L_{\odot}, \quad T_{\text{bol}} = 91 \, K, \quad 0.8 \, M_{\odot} \]

Similar Class I Binary Protostars
L1551 IRS 5 & NE

Redshifted-side reflection nebula

Northern jet
PHK2 PHK3

Counter jet

Southern jet

Knot C

Knot A

Knot B

HP6

HH 260

20"

H2, [Fe II], H

L1551 IRS 5

Fe II jet Driven by Source A

Reflection nebula

(Hayashi & Pyo 2009)

(Reipurth et al. 00, 02)
2. SubMillimeter Array (SMA) Observations of L1551 NE

13CO (3-2; 330.588 GHz), C18O (3-2; 329.331 GHz) and 0.9-mm continuum

Primary beam: \sim36”

Resolution: 0.80” \times 0.54” (cont.), 0.95” \times 0.66” (line)

Velocity resolution: 0.37 km s$^{-1}$

Noise level: \sim3.6 mJy beam$^{-1}$ (cont.), \sim0.11 Jy beam$^{-1}$ (line)
0.9-mm Continuum

Compact Component associated with Source A (0.9” x 0.5”, 0.7 Jy)
+ Extension to Source B

+ North and South Comp.

Rim-Brightening Circumbinary Disk + Circumstellar Disks

Total Mass ~ 0.046 M_{solar}
Kinematics of the Circumbinary Disk traced in $^{13}\text{CO} \ (3-2)$ and $\text{C}^{18}\text{O} \ (3-2)$

SE - NW Elongated, circumbinary disk seen

Clear Velocity Gradient along the major axis,
No clear Velocity Gradient along the minor axis?

The position of Source A appears to be the ``center'' ($V_{\text{sys}} \sim 7 \text{ km s}^{-1}$)
Keplerian Disk Model Fitting

Best Fit Result of C18O 3-2

$\rightarrow (M_*, i, \theta) = (0.8 \, M_{\text{solar}}, -62^\circ, 167^\circ)$

C18O Blue

Contours 2σ in steps of 2σ
C18O Red

Obs

Model

Res

Contours 2σ in steps of 2σ

Fitting rms \sim0.14 Jy beam$^{-1}$ \approx Obs rms 0.12 Jy beam$^{-1}$

For this simple, thin disk model with only three parameters, the C18O fitting result is good.
Summary of L1551 NE

Compact (~100 AU) dusty condensation at protobinary → Circumstellar disks

Northern + Southern dusty components → 600-AU circumbinary disk (total mass ~ 0.05 M$_{\text{solar}}$)

13CO (3-2) & C18O (3-2) lines show Keplerian Rotation in the Circumbinary Disk
3. SMA & ASTE Observations of L1551 IRS 5

ASTE: CS (7-6; 342.9 GHz)
SMA: CS, HCN, SO, 0.9-mm continuum

SMA + ASTE combined CS data
Primary beam: ~36”
Resolution: ~5.2” × 2.4”
Velocity resolution: 0.18 km s⁻¹
rms noise ~0.3 K
NW-SE elongated feature both in submm molecular lines and continuum (~500 AU; P.A. = -32 deg)

→ Circumbinary Disk
Combined SMA + ASTE CS (7-6) image of L1551 IRS 5

ASTE \rightarrow
\sim 2600 \text{ AU extended comp.}

SMA \rightarrow
\sim 500 \text{ AU circumbinary disk}

SMA + ASTE \rightarrow \sim 500 \text{ AU circumbinary disk} +
\sim 2600 \text{ AU extended comp.}

Free from ``missing flux''
--> Kinematical study of the circumbinary disk
SE Blue, NW Red, exactly along the disk major axis. No velocity gradient along the minor axis in the disk.

In the extended component, NE Blue, SW Red
The velocity gradient along the disk major axis can be fitted with the $v_{\text{rot}} \sim r^{-1}$ rotation, better than the Keplerian rotation.

No infalling motion in the disk, which should be observed as a velocity gradient along the minor axis.
Hierarchical Spatial and Dynamical Structures

Circumstellar Disks (~20 AU) Circumbinary Disk (~500 AU) Protostellar Envelope (~2000 AU)

VLA 7-mm SMA CS (7-6) NMA C^{18}O (1-0)

Proper motion → Coplanar rotation to the disk?

\[\nu_{\text{rot}} \sim r^{-1} \text{ rotation, but no infall?} \]

\[\nu_{\text{rot}} \sim r^{-1} \text{ rotation + infall} \]
Summary of L1551 IRS 5

500 AU-scale Circumbinary Disk in 0.9-mm continuum and CS (7-6)

Velocity Gradient primarily along the major axis of the circumbinary disk $\rightarrow r^{-1}$ rotation

Contrary to the \sim2000-AU scale mm C18O envelope, no infall in the 500-AU scale Circumbinary Disk
4. Discussion: Different Rotation in the Circumbinary Disks?

L1551 NE \rightarrow Keplerian rotation

\[v_{\text{rot}}(r) = \sin i \sqrt{\frac{GM_*}{r}} \]

L1551 IRS 5 $\rightarrow v_{\text{rot}} \propto r^{-1}$ rotation

\[v_{\text{rot}}(r) = \sin i \frac{j}{r} \]

In L1551 IRS 5, the expected Radius of Keplerian Rotation is ~ 35 AU. However, this is comparable to the binary separation, thus no Keplerian circumbiary disk in L1551 IRS 5.
Theory of Binary Formation

The rotation of the circumbinary disk is a ``free” parameter.

- Bate & Bonnel 1997, Bate 2000, Ochi et al. 2005
- r^{-1} rotating and infalling circumbinary disk assumed

- Gunther & Kley 2002
- Keplerian Disk assumed \rightarrow stable accretion flow

No detailed binary formation model can explain the different rotation in circumbinary disks around the protobinary systems.
Possible explanation?

Tidal interaction of the binary orbital motion could pile up the angular momentum at the inner edge of the circumbinary disk, thus, forming a Keplerian disk?

Then, the different rotations between IRS 5 and NE may be due to the evolutionary difference?

L1551 IRS 5 → The circumbinary disk just formed from the infalling, $v_{rot} \sim r^{-1}$ envelope

L1551 NE → The binary tidal interaction has piled up the enough angular momentum in the circumbinary disk, thus shows Keplerian rotation.