Phase analysis of the cosmic microwave background from incomplete sky coverage

Lung-Yih Chiang1,2† and Pavel D. Naselsky2,3

1 Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan
2 Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
3 Southern Federal University, Space Research Department, Zorge,5, 344091, Russia

ABSTRACT

Phases of the spherical harmonic analysis of full-sky cosmic microwave background (CMB) temperature data contain useful information complementary to the ubiquitous angular power spectrum. In this Letter we present a new method of phase analysis on incomplete sky maps. It is based on Fourier phases of equal-latitude pixel rings of the map, which are related to the mean angle of the trigonometric moments from the full-sky phases. It has an advantage for probing regions of interest without tapping polluted Galactic plane area, and can localize non-Gaussian features. This method is therefore very useful for detection of departure from Gaussianity and statistical isotropy in the CMB.

Keywords: cosmology; cosmic microwave background – observations – methods: analytical.

1 INTRODUCTION

The temperature anisotropy of the cosmic microwave background (CMB) radiation contains a wealth of information about our Universe. Its statistical properties not only shed light on what kind of universe we are living in, but also lay the foundation for the significance and interpretation of the angular power spectrum. According to the generally accepted cosmological model, namely the Cosmological Concordance Model, the primordial fluctuations in the early Universe constitute a Gaussian random field (GRF) (Bardeen et al. 1986; Bond & Efstathiou 1987). As the CMB is an observable imprint of the primordial fluctuations, therefore, after the NASA Wilkinson Microwave Anisotropy Probe (WMAP) data release (Bennett et al. 2003a,b; Hinshaw et al. 2003; Komatsu et al. 2003; Hinshaw et al. 2007; Spergel et al. 2007), testing the Gaussianity of the CMB has been imperative for our understanding of the Universe (Chiang et al. 2003; Gaztanaga & Wagg 2003; Coles et al. 2003; Park 2004; Eriksen et al. 2004b; Vielva et al. 2004; Cabella et al. 2004; Hansen et al. 2004; Mukherjee & Wang 2004; Larson & Wandelt 2004; Naselsky et al. 2005; Tojeiro et al. 2006; Dineen & Coles 2003; Tegmark, de Oliveira-Costa & Hamilton 2003; de Oliveira-Costa et al. 2004; Eriksen et al. 2004a; Copi, Huterer & Starkman 2004; Schwarz et al. 2004; Land & Magueijo 2005; Bernui et al. 2007; Abramo et al. 2006; Chiang, Naselsky & Coles 2007b; Cruz et al. 2007; McEwen et al. 2006; Copi, Huterer Schwarz & Starkman 2007; Chiang, Coles & Naselsky 2007a; Eriksen et al. 2007).

One of the most general ways to test Gaussianity is based on the ‘random phase hypothesis’, as any departure from Gaussianity in the data shall register as some sort of phase correlation in the harmonic domain. There have been several non-Gaussianity methods devised from phase information: e.g. Shannon entropy of phases (Chiang & Coles 2000), phase mapping (Chiang et al. 2003; Chiang et al. 2004; Chiang & Naselsky 2006), trigonometric moments (Naselsky et al. 2004a,b), phase sums (Matsubara 2003; Hikage et al. 2005), random walks (Stannard & Coles 2005; Naselsky et al. 2005), some of which have been deployed on WMAP full-sky maps and detection of non-Gaussianity has been reported.

As phases and morphology are closely related (Chiang 2001), one requirement for applying phases as a useful statistical diagnostic is continuity of the boundaries in the data, otherwise the phases would faithfully reflect boundary discontinuity by strong coupling. Therefore, those above-mentioned methods using phase information (particularly for CMB studies) can be deployed only on data with a full-sky coverage.

Due to excessive foreground contamination near the Galactic plane, the WMAP science team has adopted a specific foreground removal strategy using the so-called temperature masks (Bennett et al. 2003b; Hinshaw et al. 2007), which divide the full sky into 12 regions. The largest, Region 0, covers about 89 per cent of the full sky, whereas the other 11 regions are masked due to heavy foreground emissions of different kinds around the Galactic plane: synchrotron, free–free and dust emission (see Fig. 1). Although a full-sky derived CMB map, the Internal Linear Combination (ILC) map, is combined from the 12 foreground-reduced regions and available to the public, most scientific results including the angular power spectrum are derived from the cleanest Region 0 (Hinshaw et al. 2007), and the full-sky ILC map is known to still have foreground residuals near the Galactic plane.

In this Letter we present a new method for phase analysis on maps with Galaxy cut, assuming that the orthogonality of the Fourier series in the azimuthal direction outside the Galaxy cut is still valid.
preserved.1 It is based on Fourier phases of equal-latitude pixel rings of the map, which is closely related to the mean angle of the trigonometric moments on the full-sky phases with some weighting coefficients (Naselsky et al. 2005). We can examine the Fourier phases of all equal-latitude pixel rings from regions, e.g. WMAP Region 0, while avoiding the polluted Galactic plane area. More importantly, we can pin down non-Gaussian features by using the phases derived this way, an advantage that is generally lacking in the analysis processed in harmonic domain. Note that all the above mentioned methods based on phases can be applied using the phases we derive in this Letter.

\section{2 PHASES FROM AN INCOMPLETE SKY MAP}

The standard treatment for a full-sky CMB signal $T(\theta, \varphi)$ is via spherical harmonic decomposition:

$$T(\theta, \varphi) = \sum_{\ell=0}^{\ell_{\text{max}}} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \varphi),$$

where ℓ_{max} is the maximum multipole number used in the map, θ and φ are the polar and azimuthal angle, respectively, and $a_{\ell m}$ are the spherical harmonic coefficients. $Y_{\ell m}$ are the spherical harmonics, defined in terms of Legendre Polynomials:

$$Y_{\ell m}(\theta, \varphi) = N_{\ell m} P^m_\ell(\cos \theta) \exp(i m \varphi),$$

where

$$N_{\ell m} = (-1)^m \sqrt{(2\ell + 1)(\ell - m)! / 4\pi (\ell + m)!}.$$ \hfill (3)

The $a_{\ell m}$ coefficients can be further written as

$$a_{\ell m} = |a_{\ell m}| \exp[i \Phi_{\ell m}],$$

where $\Phi_{\ell m}$ are the phases. If the CMB temperature anisotropies constitute a GRF, the real and imaginary part of the $a_{\ell m}$ are both Gaussian distributed, or equivalently, the $|a_{\ell m}|$ are Rayleigh distributed and phases $\Phi_{\ell m}$ are uniformly random in $[0, 2\pi]$. In the polar coordinate system $\theta = \pi/2$ is associated with the Galactic plane ($b = 0$), as used by HEALPIX (Görski, Hivon & Wandelt 1999) and GLESP (Doroshkevich et al. 2003) software packages.

1 Note that WMAP Region 0 is not symmetric with respect to $b = 0$, but $|b| > 30^\circ$ is surely outside the Galaxy mask (see Fig. 1).

For signals from an incomplete sky coverage, implementation of the spherical harmonic decomposition is no longer correct, as the orthogonality of the spherical harmonics $Y_{\ell m}$ is broken (Görski 1994). This is particularly the case when one is to analyze the WMAP ILC Galaxy-cut map. Nevertheless, a Galaxy cut only breaks the orthogonality of the spherical harmonics over the θ direction, but that of the φ direction outside the Galaxy plane is preserved (Görski 1994).

To see how phases of an incomplete sky map (e.g. an ILC Galaxy-cut map) can be related to its full-sky phases, let us extract an equal-latitude pixel ring at $\theta = \theta_c$, where θ_c is outside the maximum latitude of any Galaxy masks. This ring $T(\theta_c, \varphi) = T_c(\varphi)$ is now a one-dimensional signal, for which we can use a Fourier Transform approach with coefficients g^c_m:

$$T_c(\varphi) = \sum_{m=-\ell_{\text{max}}}^{\ell_{\text{max}}} g^c_m \exp(i m \varphi),$$

where $m_{\text{max}} \leq \ell_{\text{max}}$ and

$$g^c_m = \frac{1}{2\pi} \int_0^{2\pi} \exp(-i m \varphi) \varphi T_c(\varphi) \mathrm{d}\varphi.$$

We can then relate the ring to the full-sky signal via equations (1) and (2), and get

$$g^c_m = \sum_{\ell \geq |m|} N_{\ell m} P^m_\ell(\cos \theta_c) a_{\ell m}.$$

That is, the Fourier coefficients g^c_m of the ring can be expressed as a combination of the full-sky $a_{\ell m}$. Writing $g^c_m = |g^c_m| \exp(i \kappa^c_m)$, the phases κ^c_m are

$$\kappa^c_m = \tan^{-1} \left\{ \frac{\sum_{\ell \geq |m|} W_{\ell m}(\theta_c) \sin \Phi_{\ell m}}{\sum_{\ell \geq |m|} W_{\ell m}(\theta_c) \cos \Phi_{\ell m}} \right\},$$

where $W_{\ell m}(\theta_c) = N_{\ell m} P^m_\ell(\cos \theta_c) |a_{\ell m}|$. Note that the phases κ^c_m correspond to the ‘mean angle’ of all $a_{\ell m}$ with some weighting coefficients $W_{\ell m}(\theta_c)$ involving the $|a_{\ell m}|$ (Naselsky et al. 2005). If the ring $T(\theta_c, \varphi)$ is taken from a GRF, its phases κ^c_m are a combination of the uniformly random phases $\Phi_{\ell m}$, hence are also uniformly random in $[0, 2\pi]$. We can then examine all the pixel rings of the ILC map for $0 \leq \theta \leq \pi/3$ and $2\pi/3 \leq \theta \leq \pi$ without tapping the heavily polluted region near the Galactic plane. Our demonstration here is a special case for a well-known theory: any $N \times N$ dimensional cross-sections of N dimensional Gaussian random process produce a Gaussian process as well. Thus, if one is to investigate the phases of the $a_{\ell m}$ coefficients from a full-sky map, one can test alternatively the phases of equal-latitude pixel rings of the Galactic-cut map.

However, a more intriguing question is whether we can reconstruct the phases of a full-sky signal $\Phi_{\ell m}$ by using the phases κ_m from the stripes of an incomplete sky map? Obviously we cannot reconstruct all the phases due to the Galaxy cut, but we can recover a significant part of the full-sky phases. Based on Görski’s (1994) method and taking into account that a Galaxy-cut map only breaks the orthogonality of the Legendre polynomials in θ direction, there shall exist some polynomials $K^c_m(\theta)$ which are orthogonal to the Legendre polynomials $P^m_\ell(\theta)$ within some intervals $[0, \pi/2 - \varphi_{\text{cut}}]$ and $[\pi/2 + \varphi_{\text{cut}}, \pi]$. Namely,

$$\int_0^1 \mathrm{d}x P^m_\ell(x) K^c_m(x) = F(\ell, m) \delta_{c\ell},$$

\hfill (8)
3 MEAN ANGLE OF THE PHASES FROM THE ILC (GALAXY-CUT) MAP

In this section, serving as an example of the Fourier phases \(\kappa_m \) providing a useful diagnostic, we employ the trigonometric moments and the mean angles on the phases derived from the equal-latitude pixel rings. The trigonometric moments are defined as follows (Naselsky et al. 2005):

\[
C_c(\Delta m) = \sum_{n=1}^{M} \cos \left(\kappa_m^{c+\Delta m} - \kappa_m^c \right);
\]

\[
S_c(\Delta m) = \sum_{n=1}^{M} \sin \left(\kappa_m^{c+\Delta m} - \kappa_m^c \right),
\]

where \(M \leq \ell_{\text{max}} - \Delta m \). Note that in this definition we use phase differences where \(\Delta m \geq 1 \). The mean angle is defined as

\[
\Theta_c(\Delta m) = \tan^{-1} \left(\frac{S_c(\Delta m)}{C_c(\Delta m)} \right).
\]

The mean angle can be seen as the resultant angle of Pearson’s random walk (walks with a fix length in each step): \(\sum_{n=1}^{M} \exp[i(\kappa_m^{c+\Delta m} - \kappa_m^c)] \) (Pearson 1906; Naselsky et al. 2005). For a GRF, the phases \(\Phi_{b\ell} \) are uniformly random; so are the \(\kappa_m^c \) for each pixel ring. As the difference of any two random variables should be random as well, one then expects the mean angles \(\Theta \) from an ensemble of Gaussian processes to be uniformly random in \([0, 2\pi]\).

We use the WMAP ILC 3-yr map with \(\ell_{\text{max}} = 512 \) as an example of a high-resolution map. For each equal-latitude pixel ring \(T_b(\ell) \), we use Fast Fourier Transform and obtain the phases \(\kappa_m^c \). In Figs 2 and 3 we plot the mean angles of each pixel ring with \(\Delta m = 1 \) up to \(M = 50 \) and 300, respectively, against the Galactic latitude \(b \). In

\[
\begin{align*}
S_{bm} &= \int_{-\pi}^{\pi} \sin \pi x \, \exp[i \pi \kappa_m^c(x)] \, \exp[i \pi \kappa_m^{c+\Delta m}(x)] \, dx \\
&= (-1)^m \int_{-\pi}^{\pi} \sin \pi x \, \exp[i \pi \kappa_m^c(x)] \, \exp[i \pi \kappa_m^{c+\Delta m}(x)] \, dx \\
&= N_{bm} F(\ell, m) |a_{bm}| \exp(i \Phi_{bm});
\end{align*}
\]

which can be used for analysis of their phases. Because \(F(\ell, m) \) is a sign-flipping function, the phases of \(S_{bm} \) are equivalent to \(\Phi_{bm} \pm \pi \). However, the cross correlation of phases can be preserved. Care has to be taken in deconvolution for the phases. Due to pixelization of the signal, particularly for the polar caps, modes at high multipole numbers tap the window function of the pixels. Implementing simple deconvolution of the signal by window functions produces artifacts, which needs to be corrected by Tikhonov regularization. The same correction is needed for the high \(m \) modes as they are close to the Nyquist frequency. We will describe this approach in another paper.

Figure 2. The mean angle (defined in equation (10) and (11) with \(\Delta m = 1 \) up to \(M = 50 \)) of the Fourier phases from equal-latitude pixel rings \(T_b(\ell) \) of the WMAP ILC 3-yr map (top) and of a Gaussian realization (bottom). The grey area denotes the Galactic latitude boundary of the WMAP Galaxy mask at \([-21.30, 28.18]\) (see Fig. 1). One can see that the mean angles of the ILC map are significantly non-random, compared with the Gaussian realization.

Figure 3. The mean angle (defined in equations 10 and 11 with \(\Delta m = 1 \) up to \(M = 300 \)) of the Fourier phases from equal-latitude pixel rings \(T_b(\ell) \) of the WMAP ILC 3-yr map (top) and of a Gaussian realization (bottom). The grey area denotes the Galactic latitude boundary of the WMAP Galaxy mask at \([-21.30, 28.18]\) (see Fig. 1). One can see that the mean angles of the ILC map are significantly non-random, compared with the Gaussian realization.

where \(F(\ell, m) \) is the normalization coefficient. Then, defining new coefficients

\[
S'_{bm} = \int_{-\pi}^{\pi} \cos \pi x \, \exp[i \pi \kappa_m^c(x)] \, \exp[i \pi \kappa_m^{c+\Delta m}(x)] \, dx \\
= N_{bm} F(\ell, m) |a_{bm}| \exp(i \Phi_{bm});
\]

\[
S''_{bm} = \int_{-\pi}^{\pi} \sin \pi x \, \exp[i \pi \kappa_m^c(x)] \, \exp[i \pi \kappa_m^{c+\Delta m}(x)] \, dx \\
= N_{bm} F(\ell, m) |a_{bm}| \exp(i \Phi_{bm}),
\]

where \(F(\ell, m) \) is the normalization coefficient. Then, defining new coefficients

\[
S'_{bm} = \int_{-\pi}^{\pi} \cos \pi x \, \exp[i \pi \kappa_m^c(x)] \, \exp[i \pi \kappa_m^{c+\Delta m}(x)] \, dx \\
= N_{bm} F(\ell, m) |a_{bm}| \exp(i \Phi_{bm});
\]

\[
S''_{bm} = \int_{-\pi}^{\pi} \sin \pi x \, \exp[i \pi \kappa_m^c(x)] \, \exp[i \pi \kappa_m^{c+\Delta m}(x)] \, dx \\
= N_{bm} F(\ell, m) |a_{bm}| \exp(i \Phi_{bm}),
\]
each figure, the top panel is the mean angles for ILC pixel rings and bottom for those from a Gaussian realization with the WMAP best-fit ΛCDM power spectrum. The grey area denotes the Galactic latitude boundary of the WMAP Galaxy mask at [−21:30, 28:18] (see Fig. 1). From both Figs 2 and 3, one can see the ILC map outside the Galaxy mask has significant non-uniform distribution for the mean angles θ whereas for the Gaussian realization θ are fairly uniformly random. Note that this example is for illustration purposes only, and more thorough analysis will be presented in another paper.

4 CONCLUSION

In this Letter we have presented a new method of phase analysis of the CMB from an incomplete sky coverage. It is based on Fourier phases of equal-latitude pixel rings of the underlying map, which are, theoretically speaking, related to the mean angles of full-sky phases via well-defined weighting coefficients. We have also employed trigonometric moments and mean angles on the new phases, which has shown qualitatively significant non-random distribution of the mean angles, signature of departure of Gaussianity. We would like to emphasize that all the methods developed using the full-sky phases can be easily implemented on the phases from an incomplete sky coverage. We will examine in details of non-Gaussianity using these phases in our next paper.

ACKNOWLEDGMENTS

We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). We also acknowledge the use of HEALPIX package (Górski et al. 1999) to produce d_m. The GLESP package (Doroshkevich et al. 2003) was used in this work.

REFERENCES

Naselsky P. D., Chiang L.-Y., Olesen P., 2005, Phys. Rev. D, 72, 3512
Pearson K., 1905, Nat, 72, 294

This paper has been typeset from a TEX/LATEX file prepared by the author.